Abstract

The solution of linear systems arising from the linear stability analysis of solutions of the Navier–Stokes equations is considered. Due to indefiniteness of the submatrix corresponding to the velocities, these systems pose a serious challenge for iterative solution methods. In this paper, the augmented Lagrangian-based block triangular preconditioner introduced by the authors in [SIAM J. Sci. Comput., 28 (2006), pp. 2095–2113] is extended to this class of problems. We prove eigenvalue estimates for the velocity submatrix and deduce several representations of the Schur complement operator which are relevant to numerical properties of the augmented system. Numerical experiments on several model problems demonstrate the effectiveness and robustness of the preconditioner over a wide range of problem parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.