Abstract

Modeling the velocity gradient dynamics in incompressible turbulence requires modeling two unclosed quantities: the pressure Hessian tensor and the viscous Laplacian tensor. In this work, we model the pressure Hessian tensor using a combination of two different physics-embedded deep neural networks. The first neural network is trained specifically to predict the alignment tendencies of the eigen-vectors of the pressure Hessian tensor, whereas the second neural network is trained only to predict the magnitude of the tensor. This separation of tasks allows us to define mathematically optimal and physics-informed customized loss functions separately for the two aspects (alignment and magnitude) of the tensor. Both neural networks take invariants of the velocity gradient tensor as inputs. Even though the training of the two networks is performed using direct numerical simulation database of an incompressible stationary isotropic turbulence at a particular Reynolds number, we extensively evaluate the model at different Reynolds numbers and in different kinds of flow fields. In incompressible flows, the proposed model shows significant improvements over the existing phenomenological model (the recent fluid deformation closure model or the RFD model) of the pressure Hessian tensor. While the improvements in the alignment tendencies are convincingly evident in the shapes of the probability density functions of the cosines of various angles between eigenvectors, the improvements in the prediction of the magnitude of the pressure Hessian tensor using the new model are quantifiable in the range of 28%–89% (depending on the type of the flow field) compared to the RFD model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.