Abstract
The problem of finding global minima of nonlinear discrete functions arises in many fields of practical matters. In recent years, methods based on discrete filled functions have become popular as ways of solving these sort of problems. However, they rely on the steepest descent method for local searches. Here, we present an approach that does not depend on a particular local optimization method, and a new discrete filled function with the useful property that a good continuous global optimization algorithm applied to it leads to an approximation of the solution of the nonlinear discrete problem (Theorem 4). Numerical results are given showing the efficiency of the new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.