Abstract

Protein trans-splicing catalyzed by split inteins is a powerful technique for assembling a polypeptide backbone from two separate parts. However, split inteins with robust efficiencies and short fragments suitable for peptide synthesis are rare and have mostly been artificially created. The novel split intein AceL-TerL was identified from metagenomic data and characterized. It represents the first naturally occurring, atypically split intein. The N-terminal fragment of only 25 amino acids is the shortest natural intein fragment to date and was easily amenable to chemical synthesis with a fluorescent label. Optimal protein trans-splicing activity was observed at low temperatures. Further improved mutants were selected by directed protein evolution. The engineered intein variants with up to 50-fold increased rates showed unprecedented efficiency in chemically labeling of a diverse set of proteins. These inteins should prove valuable tools for protein semi-synthesis and other intein-related biotechnological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.