Abstract

The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops.

Highlights

  • Pathogens are a threat for crops and natural plant populations

  • We demonstrate that RKS1 is a quantitative resistance gene in Arabidopsis thaliana conferring broad-spectrum resistance to Xanthomonas campestris (Xc) and that this resistance mechanism in plants is associated with regulation of RKS1 expression

  • To characterize the genetic basis of this variation, we carried out QTL (Quantitative Trait Locus) analysis using an F6 Recombinant Inbred Line (RIL) population of 115 lines derived from the accessions Columbia glabrous1 (Col-5) and Kashmir-1 (Kas-1) which exhibit contrasting phenotypes (Figures 1A and B) [18]

Read more

Summary

Introduction

Pathogens are a threat for crops and natural plant populations. There is still very limited information about the genes underlying quantitative resistance, despite the fact that this form of resistance is much more prevalent in crops and natural plant populations than R gene specific resistance [2]. Such genes conferring partial resistance to pathogens have been identified only in few cases, all for fungal and nematode resistance, and encode diverse molecular functions underlying durable and broad-spectrum resistance [3,4,5,6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call