Abstract
Teachers usually have a personal understanding of what “good teaching” means, and as a result of their experience and educationally related domain knowledge, many of them create learning objects ( LO) and put them on the web for study use. In fact, most students cannot find the most suitable LO (e.g. learning materials, learning assets, or learning packages) from webs. Consequently, many researchers have focused on developing e-learning systems with personalized learning mechanisms to assist on-line web-based learning and to adaptively provide learning paths. However, although most personalized learning mechanism systems neglect to consider the relationship between learner attributes (e.g. learning style, domain knowledge) and LO’s attributes. Thus, it is not easy for a learner to find an adaptive learning object that reflects his own attributes in relationship to learning object attributes. Therefore, in this paper, based on an ant colony optimization (ACO) algorithm, we proposed an attributes-based ant colony system (AACS) to help learners find an adaptive learning object more effectively. Our paper makes three critical contributions: (1) It presents an attribute-based search mechanism to find adaptive learning objects effectively; (2) An attributes-ant algorithm was proposed; (3) An adaptive learning rule was developed to identify how learners with different attributes may locate learning objects which have a higher probability of being useful and suitable; (4) A web-based learning portal was created for learners to find the learning objects more effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.