Abstract

With the wide application of the Internet of Things (IoT), storing large amounts of IoT data and protecting data privacy has become a meaningful issue. In general, the access control mechanism is used to prevent illegal users from accessing private data. However, traditional data access control schemes face some non-ignorable problems, such as only supporting coarse-grained access control, the risk of centralization, and high trust issues. In this paper, an attribute-based data access control scheme using blockchain technology is proposed. To address these problems, attribute-based encryption (ABE) has become a promising solution for encrypted data access control. Firstly, we utilize blockchain technology to construct a decentralized access control scheme, which can grant data access with transparency and traceability. Furthermore, our scheme also guarantees the privacy of policies and attributes on the blockchain network. Secondly, we optimize an ABE scheme, which makes the size of system parameters smaller and improves the efficiency of algorithms. These optimizations enable our proposed scheme supports large attribute universe requirements in IoT environments. Thirdly, to prohibit attribute impersonation and attribute replay attacks, we design a challenge-response mechanism to verify the ownership of attributes. Finally, we evaluate the security and performance of the scheme. And comparisons with other related schemes show the advantages of our proposed scheme. Compared to existing schemes, our scheme has more comprehensive advantages, such as supporting a large universe, full security, expressive policy, and policy hiding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call