Abstract

This paper presents a novel whole-body torque-control concept for humanoid walking robots. The presented Whole-Body Motion Control (WBMC) system combines several unique concepts. First, a computationally efficient gravity compensation algorithm for floating-base systems is derived. Second, a novel balancing approach is proposed, which exploits a set of fundamental physical principles from rigid multi-body dynamics, such as the overall linear and angular momentum, and a minimum effort formulation. Third, a set of attractors is used to implement both balance and movement features such as to avoid joint limits or to create end-effector movements. Superposing several of these attractors allows to generate complex whole-body movements to perform different tasks simultaneously. The modular structure of the proposed control system easily allows extensions. The presented concepts have been validated both in simulations, and on the 29-dofs compliant torque-controlled humanoid robot COMAN. The WBMC has proven robust to the unavoidable model errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.