Abstract
Mycoplasma pneumoniae (M. pneumoniae) is the causative agent of both upper and lower respiratory infections that can lead to pneumonia, extrapulmonary complications and devastating sequela. With the increasing rate of macrolide-resistant strains, the severe clinical consequence of refractory mycoplasma pneumonia in children health calls for the need of vaccine research for this pathogen. In this report, the immunomodulatory effectiveness of a live attenuated M. pneumoniae vaccine was evaluated. The vaccine strain was a mutant strain of M. pneumoniae, MUT129, obtained after multiple passages of M129 strain in PPLO broth. The SNP/InDel detection results showed that mutations were present in genes encoding the adhesion organelle-associated proteins and lipoproteins of M. pneumoniae MUT129. Upon intranasal challenge of BALB/c mice with 1 × 107 CFU of MUT129, there were very small amount of Mycoplasma antigens and almost no M. pneumoniae present in the lung tissues of BALB/c mice. Besides, there was almost no inflammatory cell infiltration in the lung tissue. Results of the M. pneumoniae challenge study showed that mice immunized with MUT129 presented with less inflammation, lower detectable number of M. pneumoniae in the lungs when compared with the unimmunized mice. These results indicated that the live attenuated vaccine can efficiently prevent the proliferation of M. pneumonia in the lungs, reduce but not completely prevent the pulmonary inflammatory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.