Abstract
Learning-based approaches have made substantial progress in capturing spatially-varying bidirectional reflectance distribution functions (SVBRDFs) from a single image with unknown lighting and geometry. However, most existing networks only consider per-pixel losses which limit their capability to recover local features such as smooth glossy regions. A few generative adversarial networks use multiple discriminators for different parameter maps, increasing network complexity. We present a novel end-to-end generative adversarial network (GAN) to recover appearance from a single picture of a nearly-flat surface lit by flash. We use a single unified adversarial framework for each parameter map. An attention module guides the network to focus on details of the maps. Furthermore, the SVBRDF map loss is combined to prevent paying excess attention to specular highlights. We demonstrate and evaluate our method on both public datasets and real data. Quantitative analysis and visual comparisons indicate that our method achieves better results than the state-of-the-art in most cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.