Abstract
Recognizing irregular text in real industrial scenes is a challenging task due to the background clutter, low resolutions or distortions. In this work, an attention-based text detection and recognition method for terminals of current transformer’s secondary circuit is proposed. It consists of three major components: pre-processing, text detection and text recognition. In text recognition module, a novel spatial temporal embedding is designed to better utilize the positional information. During training, the proposed framework only requires sequence-level annotations, instead of extra fine-grained character-level boxes or segmentation masks as in previous work. Despite its simplicity, the proposed method achieves good performance on the dataset collected in actual working scene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.