Abstract
Long Short-Term Memory (LSTM) has been proven an efficient way to model sequential data, because of its ability to overcome the gradient diminishing problem during training. However, due to the limited memory capacity in LSTM cells, LSTM is weak in capturing long-time dependency in sequential data. To address this challenge, we propose an Attention-aware Bidirectional Multi-residual Recurrent Neural Network (ABMRNN) to overcome the deficiency. Our model considers both past and future information at every time step with omniscient attention based on LSTM. In addition to that, the multi-residual mechanism has been leveraged in our model which aims to model the relationship between current time step with further distant time steps instead of a just previous time step. The results of experiments show that our model achieves state-of-the-art performance in classification tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.