Abstract

Objective. Major depressive disorder (MDD) is one of the biggest threats to human mental health. MDD is characterized by aberrant changes in both structure and function of the brain. Although recent studies have developed some deep learning models based on multi-modal magnetic resonance imaging (MRI) for MDD diagnosis, the latent associations between deep features derived from different modalities were largely unexplored by previous studies, which we hypothesized may have potential benefits in improving the diagnostic accuracy of MDD. Approach. In this study, we proposed a novel deep learning model that fused both structural MRI (sMRI) and resting-state MRI (rs-fMRI) data to enhance the diagnosis of MDD by capturing the interactions between deep features extracted from different modalities. Specifically, we first employed a brain function encoder (BFE) and a brain structure encoder (BSE) to extract the deep features from fMRI and sMRI, respectively. Then, we designed a function and structure co-attention fusion (FSCF) module that captured inter-modal interactions and adaptively fused multi-modal deep features for MDD diagnosis. Main results. This model was evaluated on a large cohort and achieved a high classification accuracy of 75.2% for MDD diagnosis. Moreover, the attention distribution of the FSCF module assigned higher attention weights to structural features than functional features for diagnosing MDD. Significance. The high classification accuracy highlights the effectiveness and potential clinical of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.