Abstract

With the advancement of communication technology and location acquisition technology in the context of modern smart cities, the sharing bike systems offer users the great autonomy and convenience for the last/first-kilometer trip. Meanwhile, we can now able to collect, store, and analyze a large amount of sharing bike data. How to effectively use these massive data to provide better services is an emerging task. However, due to the skewed and imbalanced bike usages for stations located at different places, it is of great significance yet very challenging to predict the potential destinations of each individual trip beforehand so that the service providers can better schedule manual bike re-dispatch in advance. To address this issue, this paper proposes an attention-based deep learning framework for trip destination prediction (AFTER). AFTER first learns the low-dimension representations of users and sharing bike stations via negative sampling strategies. Then, a convolution neural network with an attention mechanism is utilized to predict the future trip destination. Experimental results on a real-world dataset indicate that the proposed framework outperforms several state-of-the-art approaches in terms of precision, recall, and F1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.