Abstract

Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where endmember abundance maps obtained by HU are treated as latent features for classification. A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features. In addition, an attention approach is used to improve the accuracy of abundance estimation by extracting the diagnostic spectral features associated with the given endmember more effectively. The endmember abundance estimated by the proposed model outperforms other convolutional neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and compared to several supervised and semi-supervised models. The experimental findings demonstrate that the proposed approach has promising potential for hyperspectral feature extraction and has better performance relative to CNN-based supervised classification under small-sample conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call