Abstract
LSTM-SNP model is a recently developed long short-term memory (LSTM) network, which is inspired from the mechanisms of spiking neural P (SNP) systems. In this paper, LSTM-SNP is utilized to propose a novel model for aspect-level sentiment analysis, termed as ALS model. The LSTM-SNP model has three gates: reset gate, consumption gate and generation gate. Moreover, attention mechanism is integrated with LSTM-SNP model. The ALS model can better capture the sentiment features in the text to compute the correlation between context and aspect words. To validate the effectiveness of the ALS model for aspect-level sentiment analysis, comparison experiments with 17 baseline models are conducted on three real-life data sets. The experimental results demonstrate that the ALS model has a simpler structure and can achieve better performance compared to these baseline models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.