Abstract

Mesoporous glass membranes were synthesised and used to study the influence of an altered surface chemistry on adsorption and diffusion properties. A modification with a silane possessing high amine content was conducted to enhance the interaction with adsorbable gases. The obtained membranes were characterised by their adsorption equilibrium properties and their permeabilities for the gas pair carbon dioxide and nitrogen in single gas and binary mixture permeation experiments. The modified surface induced a reversal in the temperature dependence of the membrane selectivity. The strong adsorption on the modified surface led to a hindered carbon dioxide transport at lower temperatures and an accelerated transport at higher temperatures. Due to the limited amount of grafted adsorption sites on the modified membranes this effect was pronounced at low partial pressures of carbon dioxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.