Abstract
Machining of Ti6Al4V is considered difficult because the material removal rates are relatively small if the tool wear shall be low. In recent years the reduction of process forces as well as tool wear have been investigated by introducing textures (pockets) into the tool surface. To advance the understanding how those textured tools function and to reduce the experimental effort, a smoothed particle hydrodynamics (SPH) model of the orthogonal cutting process with a parametrised tool containing a single pocket on the rake face with variable position and depth is presented. This simulation model is used to enhance the understanding of rake face textures in order to design optimum cutting tools for given process parameters. Using an optimisation algorithm, an optimum texture geometry is determined numerically and is then experimentally validated, followed by a discussion, why process force reductions are lower than predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.