Abstract

The goal of this study was to determine whether in the dog ATP-sensitive K+ channels blocked with glibenclamide affect diaphragmatic blood flow [phrenic arterial blood flow (Qpa)] during both spontaneous breathing at rest and increased diaphragmatic activity. A control group (no glibenclamide; n = 4) and an experimental group (50 mg/kg of glibenclamide; n = 5) were studied. During spontaneous breathing at rest, Qpa was 15.0 ml.min-1 x 100 g-1 and decreased by 5% in the presence of glibenclamide. Diaphragmatic pacing (30 min-1) generated by phrenic nerve pacing produced an initial diaphragmatic tension-time index of 0.25 in both groups. A 50% decay in transdiaphragmatic pressure was reached at 165 s in the experimental group compared with 421 s in the control group. Diaphragmatic pacing increased Qpa by 46% in the experimental group and 65% in the control group, yielding a 63% greater vascular resistance in the experimental group. Phrenic vein K+ content at rest was unchanged by the presence of glibenclamide, being 3.6 +/- 0.16 mmol/l compared with 3.5 +/- 0.19 mmol/l in the control group. Phrenic nerve pacing in the control group produced a 13% increase in phrenic vein K+ content, whereas in the experimental group a 16% decrease was observed. We suggest that ATP-sensitive K+ channels play an important role in the modulation of Qpa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.