Abstract
The paper presents the application of an ATP-EMTP Monte Carlo procedure for backflashover rate (BFOR) evaluations to HV overhead lines (OHL), equipped with three different types of spatially extended and/or geometrically involved tower grounding systems. The ATP-EMTP circuit model of the OHL includes detailed line insulation and lightning representation; grounding systems are simulated by a new and simplified model which reproduces the effects of propagation along the ground conductors and soil ionization phenomena. The statistical variables include lightning stroke parameters (polarity, peak current, front and tail times), lightning location, as well as line insulation withstand and phase angle of the supply voltage. An external software engine generates all the required statistically-oriented ATP-EMTP input data, sequentially launches and manages ATP simulations and finally post-processes the results. A good performance in terms of convergence and computation times is evidenced. Results are compared to those yielded by both the simplified and ‘complete’ CIGRE methods for backflashover rate calculations, showing the applicability of the proposed procedure to line configurations characterized by complex tower grounding arrangements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.