Abstract

Branching is a fundamental mechanism for lamellar spacing adjustment during eutectic solidification. However, the kinetic mechanism of branching is still unclear due to the lack of in-situ observations. In this work, utilizing the binary phase-field crystal model, we investigated the lamellar branching process during eutectic directional growth on an atomic scale. By visualizing the new lamella creation process, we found that new α lamellae form from heterogeneous nucleation at the front of the β/liquid interface. After further simulating eutectic solidification with different temperatures and lattice-mismatches, we found that the conditions that promote the heterogeneous nucleation could also stimulate lamellar branching. Conversely, if we suppress the heterogeneous nucleation process, lamellar branching will be hard to emerge, and the eutectic morphology will be a 2λ oscillating pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.