Abstract

Carbon nanotubes (CNTs) display unique properties and have many potential applications. Prior theoretical studies on CNTs are based on atomistic models such as empirical potential molecular dynamics (MD), tight-binding methods, or first-principles calculations. Here we develop an atomistic-based continuum theory for CNTs. The interatomic potential is directly incorporated into the continuum analysis through constitutive models. Such an approach involves no additional parameter fitting beyond those introduced in the interatomic potential. The atomistic-based continuum theory is then applied to study fracture nucleation in CNTs by modelling it as a bifurcation problem. The results agree well with the MD simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.