Abstract
The X-ray crystal structures of complexes between the antimalarial drugs quinine, quinidine and halofantrine and their biological target, iron(III) ferriprotoporphyrin IX (FePPIX), have been reported in the literature (de Villiers et al. in ACS Chem Biol 7:666, 2012; J Inorg Biochem 102:1660, 2008) and show that all three drugs utilize their zwitterionic alkoxide forms to coordinate to the iron atom via Fe–O bonds. In this work, density functional theory calculations with implicit solvent corrections have been used to model the energetics of formation of these complexes. It is found that the cost of formation of the active zwitterionic form of each drug is more than offset by the energy of its binding to FePPIX, such that the overall energies for complexation of all three drugs with FePPIX are moderately favourable in water, and rather more favourable in n-octanol as solvent. The calculations have been extended to develop an analogous model for the complex between FePPIX and chloroquine, whose structure is not presently known from experiment.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.