Abstract
The atomic configuration at the tip of a mode 1 crack in aluminum is modeled by means of molecular dynamics calculations using an embedded atom potential. This potential intrinsically incorporates many-body contributions. This paper is concerned with the characteristics of the atomic displacement fields in comparison to the linear elastic predictions and dislocation emission phenomena. Three crack/crystal orientations are examined in which the crack plane–crack propagation directions are (010)-[100], (10)-[110], and (10)-[111]. The first two models behaved in a brittle fashion as dislocation emission did not occur for reasons associated with the use of periodic boundary conditions parallel to the crack front. For the models which remained atomically sharp, the positions of the atoms near the crack tip in equilibrium configurations are different from the linear elastic predictions but, to first order, retain an r1/2 dependence, with smaller K, and with the origin displaced behind the physical crack tip. This near tip region is also observed to be elastically softer than in the far field. Dislocation emission readily proceeds in the (10)-[111] model by the sequential emission of partials with attendant nonzero uz displacements. The blunting is characterized by the creation of two corner defects that separate as emission occurs and relaxation of the strains in the region initially confronted by the crack tip. Additional features of the results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.