Abstract
Quantum calculations have been used to examine the energetics of the reactions of diazene and isodiazene with H(2) and the properties of the Fe and Mo sites of the nitrogenase iron-molybdenum cofactor with respect to the binding of H and H(2). The results have been used to extend the model for N(2) reduction by nitrogenase given in the preceding paper to describe the formation of HD from D(2). The proposed mechanism for HD formation invokes a combination of two well-established chemical reactions, namely, competitive protonation of metal N(2) species at either the metal or at N(2), followed by scrambling of D(2) at a metal hydride. The model is evaluated against the available biochemical data for the nitrogenase HD formation reaction and extended to account for H(2) inhibition of N(2) reduction and the reduction of H(+) in the absence of other substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biochemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.