Abstract

Atmospheric phase is the main factor affecting the accuracy of ground-based synthetic aperture radar. The atmospheric phase screen (APS) may be very complicated, due to the drastic changes in atmospheric conditions, and the conventional correction methods based on regression models cannot fit and correct it effectively. Partition correction is a feasible path to improve atmospheric phase correction (APC) accuracy for complicated APS, but the overfitting problem cannot be ignored. In this article, we propose a clustering partition method, based on the normal vector of APS, which can partition the complicated APS more reasonably, and then perform APC based on the partition results. APC, and simulation experiments on measurement data, suggests that the proposed method achieves higher accuracy than the conventional model-based methods for complicated APS and avoids severe overfitting, realizing the balance between accuracy and credibility. This article verifies the feasibility and effectiveness of using APS distribution information to guide the partition and conduct APC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.