Abstract
RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B.Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance.
Highlights
Plants are often exposed to a variety of abiotic stresses such as drought, temperature extreme, salinity, and hypoxia
We found that RAV2 can directly bind the promoter of ShATL78L and regulate its expression, and ShATL78L can interact with CSN5B to regulate abiotic stress responses in tomato
The complete open reading frame (ORF) of ATL78L were isolated from tomato Ailsa Craig (S. lycopersicum) and wild species LA1777 (S. habrochaites), as well as the wild species LA0716 (S. pennellii) that displays extremely high stress tolerance (Rick and Tanksley, 1981)
Summary
Plants are often exposed to a variety of abiotic stresses such as drought, temperature extreme, salinity, and hypoxia These unfavorable environmental conditions negatively affect the plant growth, development, and productivity. The cotton WRKY transcription factor GhWRKY17 responds to drought and salt stresses through ABA signaling and regulates the cellular ROS production in plants (Yan et al, 2014). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 to modulate the salt stress response and ABA signaling in Arabidopsis (Zhang et al, 2015). Another RING finger E3 ligase, STRF1, is a membrane trafficking-related ubiquitin ligase, which helps the plants to respond to salt stress by monitoring intracellular membrane trafficking and ROS production (Tian et al, 2015)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.