Abstract

In the fight against virus-caused pandemics like COVID-19, diagnostic tests based on RT-qPCR are essential, but they are sometimes limited by their dependence on expensive, specialized equipment and skilled personnel. Consequently, an alternative nucleic acid detection technique that overcomes these restrictions, called loop-mediated isothermal amplification following reverse transcription (RT-LAMP), has been broadly investigated. Nevertheless, the developed RT-LAMP assays for SARS-CoV-2 detection still require laboratory devices and electrical power, limiting their widespread use as rapid home tests. This work developed a flexible RT-LAMP assay that gets beyond the drawbacks of the available isothermal LAMP-based SARS-CoV-2 detection, establishing a simple and effective at-home diagnostic tool for COVID-19. A multiplex direct RT-LAMP assay, modified from the previously developed test was applied to simultaneously identify the two genes of SARS-CoV-2. We used a colorimetric readout, lyophilized reagents, and benchmarked an electro-free and micropipette-free method that enables sensitive and specific detection of SARS-CoV-2 in home settings. Forty-one nasopharyngeal swab samples were tested using the developed home-testing RT-LAMP (HT-LAMP) assay, showing 100% agreement with the RT-qPCR results. This is the first electrically independent RT-LAMP assay successfully developed for SARS-CoV-2 detection in a home setting. Our HT-LAMP assay is thus an important development for diagnosing COVID-19 or any other infectious pandemic on a population scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.