Abstract

Object tracking is an important step in many artificial vision tasks. The current state-of-the-art implementations remain too computationally demanding for the problem to be solved in real time with high dynamics. This paper presents a novel real-time method for visual part-based tracking of complex objects from the output of an asynchronous event-based camera. This paper extends the pictorial structures model introduced by Fischler and Elschlager 40 years ago and introduces a new formulation of the problem, allowing the dynamic processing of visual input in real time at high temporal resolution using a conventional PC. It relies on the concept of representing an object as a set of basic elements linked by springs. These basic elements consist of simple trackers capable of successfully tracking a target with an ellipse-like shape at several kilohertz on a conventional computer. For each incoming event, the method updates the elastic connections established between the trackers and guarantees a desired geometric structure corresponding to the tracked object in real time. This introduces a high temporal elasticity to adapt to projective deformations of the tracked object in the focal plane. The elastic energy of this virtual mechanical system provides a quality criterion for tracking and can be used to determine whether the measured deformations are caused by the perspective projection of the perceived object or by occlusions. Experiments on real-world data show the robustness of the method in the context of dynamic face tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call