Abstract

Massively parallel processor-per-pixel single-instruction multiple data arrays are being successfully used for early vision applications in smart sensor systems; however, they are inherently inefficient when executing algorithms involving propagation of binary signals, such as the geodesic reconstruction. Yet, these algorithms, at the interface between pixel-level and object-level image processing, should be implemented on the vision chip to facilitate data reduction at the sensor level. A cellular asynchronous network is presented in this paper, which can be used to execute binary propagation operations. The proposed circuit is optimized in terms of speed and power consumption. In 0.35-/spl mu/m technology, the simulated propagation speed is 0.18 ns per pixel and the total energy expended per propagation is 0.37 pJ per cell. In this brief, implementation issues are discussed and simulation results including image processing examples are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.