Abstract
We propose a dynamical low-rank method to reduce the computational complexity for solving the multi-scale multi-dimensional linear transport equation. The method is based on a macro-micro decomposition of the equation; the low-rank approximation is only used for the micro part of the solution. The time and spatial discretizations are done properly so that the overall scheme is second-order accurate (in both the fully kinetic and the limit regime) and asymptotic-preserving (AP). That is, in the diffusive regime, the scheme becomes a macroscopic solver for the limiting diffusion equation that automatically captures the low-rank structure of the solution. Moreover, the method can be implemented in a fully explicit way and is thus significantly more efficient compared to the previous state of the art. We demonstrate the accuracy and efficiency of the proposed low-rank method by a number of four-dimensional (two dimensions in physical space and two dimensions in velocity space) simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.