Abstract

For a generalized Newtonian fluid the viscosity η* varies with the shear rate\(\dot \gamma *\). Instead of assuming a certain dependence like rheological models do, the viscosity is expanded in a Taylor serie with respect to\(\dot \gamma *\). Based on this expansion a perturbation approach to laminar pipe flow withqw = const. and viscous heating included is formulated. The basic flow (zero order solution) is that of a Newtonian fluid. Higher order terms successively account for the influence of a non-Newtonian fluid. — The asymptotic results compare reasonably well with those of specific rheological models like power law or Ellis model. — The influence of temperature dependent properties (including the viscosity) can be accounted for by the same kind of asymptotic approach. The influence of shear rate as well as temperature dependence thus can be combined in general results valid for all generalized Newtonian fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.