Abstract

In this paper, we devise an asymptotic model for calculating electromagnetic diffraction and absorption in planar multilayered structures with a shallow surface-relief grating. Far from the grating, we assume that the solution can be written as a power series in terms of the grating thickness δ, the coefficients of this expansion being smooth up to the grating. However, the expansion approximates the solution only sufficiently far from the grating (far field approximation). Near the grating, we assume that there exists another expansion in powers of δ (near field approximation). Moreover, there is an overlapping zone where both expansion are valid. The proposed model is based on matching the two expansions on this overlapping domain. Then, by truncating terms of order δ2 or higher, we obtain explicitly the equations satisfied by the lowest order terms in the power series. Under appropriate assumptions, we prove second order convergence of the error with respect to δ. Finally, an alternative form, more convenient for implementation, is derived and discretized with finite elements to perform some numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.