Abstract

An asymptotic method is proposed for solving transient dynamic contact problems of the theory of elasticity for a thin strip. The solution of problems by means of the integral Laplace transformation (with respect to time) and the Fourier transformation (with respect to the longitudinal coordinate) reduces to an integral equation in the form of a convolution of the first kind in the unknown Laplace transform of contact stresses under the punch. The zeroth term of the asymptotic form of the solution of the integral equation for large values of the Laplace parameter is constructed in the form of the superposition of solutions of the corresponding Wiener-Hopf integral equations minus the solution of the corresponding integral equation on the entire axis. In solving the Wiener-Hopf integral equations, the symbols of the kernel of the integral equation in the complex plane is presented in special form — in the form of uniform expansion in terms of exponential functions. The latter enables integral equations of the second kind to be obtained for determining the Laplace-Fourier transform of the required contact stresses, which, in turn, is effectively solved by the method of successive approximations. After Laplace inversion of the zeroth term of the asymptotic form of the solution of the integral equations, the asymptotic solution of the transient dynamic contact problem is determined. By way of example, the asymptotic solution of the problem of the penetration of a plane punch into an elastic strip lying without friction on a rigid base is given. Formulae are derived for the active elastic resistance force on the punch of a medium preventing the penetration of the punch, and the law of penetration of the punch into the elastic strip is obtained, taking into account the elastic stress wave reflected from the strip face opposite the punch and passing underneath it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.