Abstract

The Conway–Maxwell–Poisson distribution is a two-parameter generalization of the Poisson distribution that can be used to model data that are under- or over-dispersed relative to the Poisson distribution. The normalizing constant $$Z(\lambda ,\nu )$$ is given by an infinite series that in general has no closed form, although several papers have derived approximations for this sum. In this work, we start by using probabilistic argument to obtain the leading term in the asymptotic expansion of $$Z(\lambda ,\nu )$$ in the limit $$\lambda \rightarrow \infty $$ that holds for all $$\nu >0$$ . We then use an integral representation to obtain the entire asymptotic series and give explicit formulas for the first eight coefficients. We apply this asymptotic series to obtain approximations for the mean, variance, cumulants, skewness, excess kurtosis and raw moments of CMP random variables. Numerical results confirm that these correction terms yield more accurate estimates than those obtained using just the leading-order term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.