Abstract

The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.