Abstract

Background: Biological motion perception is served by a network of regions in the occipital, posterior temporal, and parietal lobe, overlapping areas of reduced cortical volume in schizophrenia. The atrophy in these regions is assumed to account for deficits in biological motion perception described in schizophrenia but it is unknown whether the asymmetry of atrophy found in previous studies has a perceptual correlate. Here we look for possible differences in sensitivity to leftward and rightward translation of point-light biological motion in data collected for a previous study and explore its underlying neurobiology using functional imaging.Methods: n = 64 patients with schizophrenia and n = 64 controls performed a task requiring the detection of leftward or rightward biological motion using a standard psychophysical staircase procedure. six control subjects took part in the functional imaging experiment.Results: We found a deficit of leftward but not rightward biological motion (leftward biological motion % accuracy patients = 57.9% ± 14.3; controls = 63.6% ± 11.3 p = 0.01; rightward biological motion patients = 62.7% ± 12.4; controls = 64.1% ± 11.7; p > 0.05). The deficit reflected differences in distribution of leftward and rightward accuracy bias in the two populations. Directional bias correlated with functional outcome as measured by the Role Functioning Scale in the patient group when co-varying for negative symptoms (r = -0.272, p = 0.016). Cortical regions with preferential activation for leftward or rightward translation were identified in both hemispheres suggesting the psychophysical findings could not be accounted for by selective atrophy or functional change in one hemisphere alone.Conclusion: The findings point to translational direction as a novel functional probe to help understand the underlying neural mechanisms of wider cognitive dysfunction in schizophrenia.

Highlights

  • Visual function has long been recognized as altered in schizophrenia (Silverstein and Keane, 2011)

  • The atrophy in these regions is assumed to account for deficits in biological motion perception described in schizophrenia but it is unknown whether the asymmetry of atrophy found in previous studies has a perceptual correlate

  • Directional bias correlated with functional outcome as measured by the Role Functioning Scale in the patient group when co-varying for negative symptoms (r = −0.272, p = 0.016)

Read more

Summary

Introduction

Visual function has long been recognized as altered in schizophrenia (Silverstein and Keane, 2011). The neurophysiology, brain networks and psychophysics of motion perception are well understood, providing a useful model system from which to approach the underlying neurobiology of wider cognitive dysfunction schizophrenia (Chen, 2011; Silverstein and Keane, 2011). Biological motion perception is served by a network of regions in the occipital, posterior temporal, and parietal lobe, overlapping areas of reduced cortical volume in schizophrenia. The atrophy in these regions is assumed to account for deficits in biological motion perception described in schizophrenia but it is unknown whether the asymmetry of atrophy found in previous studies has a perceptual correlate. We look for possible differences in sensitivity to leftward and rightward translation of point-light biological motion in data collected for a previous study and explore its underlying neurobiology using functional imaging

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.