Abstract
This paper presents a control solution for minimizing the takt time of a wafer transfer robot that is widely used in the semiconductor industry. To achieve this goal, this work aims to minimize the transfer time while maximizing the transfer accuracy. The velocity profile is newly designed, taking into consideration parameters such as end effector deformation, changes in friction, vibrations, and required position accuracy. This work focused on the difference between the robot’s acceleration and deceleration phases and their contributions to wafer dynamics, resulting in an asymmetric robot motion profile. Mixed cubic and quintic Bezier curves were adopted, and the optimal profile was obtained through genetic algorithms. Additionally, this work combines its newly developed motion profile with an iterative learning control to ensure the best wafer transportation process time. With the presented method, it is possible to achieve a significant reduction in takt time by minimizing wafer slippage and vibration while maximizing robot motion efficiency. All development processes presented in this paper are verified through both simulation and testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.