Abstract

An electrophoretic method for separating large DNA molecules which uses periodically inverted electric fields of different magnitude in the two directions is described. Net DNA migration is either in the high field direction or in the low field direction, depending on the relative duration of the pulses. With this approach, molecules of up to 1.6 million base pairs can be separated in parallel lanes after a single run under fixed timing conditions. An inexpensive switching unit is the only device needed in addition to the conventional gel box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.