Abstract
Capturing and exploiting textual database associations has played a pivotal role in the evolution of automated information systems. A variety of statistical, linguistic and artificial intelligence approaches have been described in the literature.Many of these R and D concepts and techniques are now being incorporated into commercially available search systems and services. This paper discusses prior work and reports on research in progress aimed at creating and utilizing a global semantic associative database, AURA (Associative User Retrieval Aid) to facilitate machine-assisted indexing, classification and searching in the large-scale information processing environment of NLM's core bibliographic databases, MEDLINE and CATLINE. AURA is a semantic network of over two million natural language phrases derived from more than a million MEDLINE titles. These natural language phrases are associatively linked to NLM's MeSH (Medical Subject Headings) and UMLS Metathesaurus (Unified Medical Language System) controlled vocabulary and classification resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.