Abstract
In this paper we propose a learning model based on a short- and long-term memory and a ranking mechanism which manages the transition of reference vectors between the two memories. Furthermore, an optimization algorithm is used to adjust the reference vectors components as well as their distribution, continuously. Comparing to other learning models like neural networks, the main advantage of the proposed model is that a pre-training phase is unnecessary and it has a hardware-friendly structure which makes it implementable by an efficient LSI architecture without requiring a large amount of resources. A prototype system is implemented on an FPGA platform and tested with real data of handwritten and printed English characters delivering satisfactory classification results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.