Abstract

Lower limb exoskeletons have already proven the capability to give back mobility to people suffering from spinal cord injury (SCI). Other important populations such as people with multiple sclerosis or muscular dystrophy, frail elderly and stroke victims, suffer from severe gait impairments and could benefit from similar technology. The work presented in the current paper describes a novel design of a 6-actuated degrees of freedom (DOFs) assistive lower limb exoskeleton for people with moderate mobility impairments. The electrical actuators are all remotely located on the back of the user for a more compact design with high dynamics. Cable driven solutions are used to transmit the flexion/extension of the hip and knee joints, while a powerful ballscrew carries out the hip adduction/abduction. The design of this exoskeleton, named AUTONOMYO, follows the key specifications of being highly back-drivable and able to perform dynamic motions at low energy consumption. AUTONOMYO is capable to assist the user's balance by providing complementary torques at the hip and the knee. Results show that the projected level of assistance for sit-to-stand transition varies from 50% to 100% in function of the user's bodyweight and height while higher level of assistance are reached for walking and stairs climbing activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.