Abstract

Metal foams are a class of cellular structured materials with open cells randomly oriented and mostly homogeneous in size and shape. In the last decade, several authors have discussed the interesting heat transfer capabilities of these materials as enhanced surfaces for air conditioning, refrigeration, and electronic cooling applications. This paper reports an assessment on the forced convection through metal foams presenting experimental and analytical results carried out during air heat transfer through twelve aluminum foam samples and nine copper foam samples. The metal foam samples present different numbers of pores per linear inch (PPI), which vary between 5 and 40 with a porosity ranging between 0.896–0.956; samples of different heights have been studied. From the experimental measurements two correlations for the heat transfer coefficient and pressure drop calculations have been developed. These models can be successfully used to optimize different foam heat exchangers for any given application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.