Abstract

The single-beam bathymetric light detection and ranging (LiDAR) system 1 (SBLS-1), which is equipped with a 532-nm-band laser projector and two concentric-circle receivers for shallow- and deep-water echo signals, is a lightweight and convenient prototype instrument with low energy consumption. In this study, a novel LiDAR bathymetric method is utilized to achieve single-beam and dual-channel bathymetric characteristics, and an adaptive extraction method is proposed based on the cumulative standard deviation of the peak and trough, which is mainly used to extract the signal segment and eliminate system and random noise. To adapt the dual-channel bathymetric mechanism, an automatic channel-selection method was used at various water depths. A minimum half-wavelength Gaussian iterative decomposition is proposed to improve the detection accuracy of the surface- and bottom-water waveform components and ensure bathymetric accuracy and reliability. Based on a comparison between the experimental results and in situ data, it was found that the SBLS-1 obtained a bathymetric accuracy and RMSE of 0.27 m and 0.23 m at the Weifang and Qingdao test fields. This indicates that the SBLS-1 was bathymetrically capable of acquiring a reliable, high-efficiency waveform dataset. Hence, the novel LiDAR bathymetric method can effectively achieve high-accuracy near-shore bathymetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.