Abstract
As a problem solving method, neural networks have shown broad applicability from medical applications, speech recognition, and natural language processing. This success has even led to implementation of neural network algorithms into hardware. In this paper, we explore two questions: (a) to what extent microelectronic variations affects the quality of results by neural networks; and (b) if the answer to first question represents an opportunity to optimize the implementation of neural network algorithms. Regarding first question, variations are now increasingly common in aggressive process nodes and typically manifest as an increased frequency of timing errors. Combating variations - due to process and/or operating conditions - usually results in increased guardbands in circuit and architectural design, thus reducing the gains from process technology advances. Given the inherent resilience of neural networks due to adaptation of their learning parameters, one would expect the quality of results produced by neural networks to be relatively insensitive to the rising timing error rates caused by increased variations. On the contrary, using two frequently used neural networks (MLP and CNN), our results show that variations can significantly affect the inference accuracy. This paper outlines our assessment methodology and use of a cross-layer evaluation approach that extracts hardware-level errors from twenty different operating conditions and then inject such errors back to the software layer in an attempt to answer the second question posed above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.