Abstract
Curved DNA fragments are often found near functionally important sites such as promoters and origins of replication, and hence sequence-dependent DNA curvature prediction is of great utility in genomics and bioinformatics. In light of this, an assessment of three different dinucleotide step parameters (based on gel retardation as well as crystal structure data) is carried out. These parameters (BMHT, LB and CS) are evaluated quantitatively for their ability to predict correctly the experimental results of a large set of nucleic acid sequences containing A-tracts as well as GC-rich motifs. This set contained around 40 synthetic as well as natural sequences whose solution properties have been well characterized experimentally. All three models could account reasonably well for curvature in the various DNA sequences. The CS model, where dinucleotide parameters are calculated from crystal structure data, consistently shows slightly better correlation with experimental data. Our simple analysis also indicates that presently available trinucleotide parameters fail to predict curvature in some of the well-characterized sequences. The study shows that the dinucleotide parameters with some further refinement can be used to predict sequence-dependent curvature correctly in genomic sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.