Abstract
The effect of mineral dust aerosols and subsequent deposition in polar regions has historically been underestimated in climate models. Dust aerosols increase melt rates by reducing surface albedo and modifying atmospheric radiative properties. In this study 127,413 satellite images covering the Arctic and Antarctic from 2007 to 2019 were assessed for dust content using thermal infrared wavelengths. The results show a strong linear trend in which the relative spatial extent of dust (RSED) increased annually by 0.31% in the Arctic (8.5% to 12.1%) and 0.19% in the Antarctic (5.2% to 7.5%). Seasonally, the maximum aggregated average RSED occurred in the Arctic during boreal winter (11.2%), while the Antarctic peaked in austral spring (9.5%). Maximum RSED rates occurred in boreal winter/austral summer (Dec–Jan–Feb) for both polar regions. The data suggests that finer dust particles are more efficiently distributed by aeolian processes leading to higher RSED values that are not necessarily reflective of polar dust loading models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.