Abstract

Soil salinization is a serious environmental issue that significantly influences crop yield and soil fertility, especially in coastal areas. Numerous studies have been conducted on the salinity status in Pakistan. Information about the geospatial and temporal distribution of salinity in the Sujawal district is still lacking. The present study examines the soil salinity status and the impact of seawater intrusion in the entire district from 1990 to 2017 using field and remote sensing (RS) data. In addition, 210 soil samples at different depths (0–20, 20–40, and 40–60 cm) were collected from randomly selected locations for lab measurements of physiochemical properties. The results showed that the soil texture classes were mainly fine to medium particles. The samples collected at the 0–20 cm depth were mostly dominated by three textural classes of soil: clay at 19.5%, clay loam at 25.6%, and loam at 32.9%. The electrical conductivity (EC) of 65.7% soil samples collected from the top layer exceeded the normal range. The quantitative results indicated that the exchangeable sodium percentage (ESP) ranged between 1.38 and 64.58, and 72.2% of the top layer soil samples had ESP >15, while 81.5% of soil samples were in the normal range of soil pH. Furthermore, the results indicated that the vegetation decreased by 8.6% from 1990 to 2017, while barren land and water bodies increased significantly, by approximately 4.4% and 4.2%, respectively. The extreme and high salinity classes were characterized by high contents of soluble salt on the surface in the Jati and Shah Bandar subdistricts. In addition, the soil EC values at the 0–20 cm depth were significantly correlated with the salinity index (S1). Therefore, it was concluded that more than 50% of the top layer of soil was affected by salinity due to seawater intrusion, low rainfall, climate change, and erratic river flow. It is suggested that remote sensing (RS) data are more suitable for the detection of the soil salinity status of a region and impose a lower cost compared to other conventional approaches. However, this study could provide significant knowledge to land managers, policymakers, and government officials to allow them to take action to implement salinity control measures in the study area.

Highlights

  • Soil salinity is a serious environmental problem throughout the world, especially in arid and semi-arid agricultural land [1,2]

  • This study investigated the soil salinity status from 1990 to 2017 in Sujawal district

  • Based on the field data (EC, pH, and exchangeable sodium percentage (ESP) analysis), it was concluded that more than 50% of the soil’s top layer was degraded by salinity in Sujawal district

Read more

Summary

Introduction

Soil salinity is a serious environmental problem throughout the world, especially in arid and semi-arid agricultural land [1,2]. SIDA [5] reported that, due to increasing salinization, Sindh requires more attention compared to other provinces in Pakistan. The basic spatial information-based methods are spatial interpolation approaches, including inverse distance weighting (IDW), kriging, cokriging, spline function, and geostatistical interpolation methods [11,12]. These methods are effective for the spatial distribution of soil salinity with limited spatial information [13,14]. The inverse distance weighting (IDW) method depends on determining the center of two known points; according to this method, the near points have more weight than distant points and vice versa [15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call