Abstract
Increasingly accurate life prediction models are required to utilize the full capability of current and future advanced materials in gas turbine engines. Of particular recent interest are predictions of the lifetimes of engine airfoil materials that experience significant intervals of high-frequency, high-cycle fatigue (HCF). Conventional life management practices for HCF in the turbine engine industry have been based principally on a total-life approach. There is a growing need to develop damage tolerance methods capable of predicting the evolution and growth of HCF damage in the presence of foreign object damage (FOD), low cycle fatigue (LCF), and surface fretting fatigue. To help identify key aspects of the HCF life prediction problem for turbine engine components, a review is pressented of the extensive results of an Air Force research contract with Pratt & Whitney on the high strength titanium alloy Ti-8Al-1Mo-1V. Data from this representative turbine-airfoil material are used to examine the applicability of linear elastic fracture mechanics methods for prediction of service lifetimes under load spectra that include high cycle fatigue. The roles of fatigue crack initiation and growth are examined for materials that are nominally-defect-free, as well for materials that have experienced significant prior structural damage. An assessment is presented of the potential utility of the conventional threshold stress intensity factor range, ΔK th, defined by testing specimens containing large cracks. Although the general utility of a large-crack-ΔK th approach is questionable due to the potentially rapid growth of small fatigue cracks, the low allowable stresses involved in turbine engine high cycle fatigue appear to limit and simplify the small-crack problem. An examination is also presented of the potential effects of high-cycle fatigue and low-cycle fatigue (HCF/LCF) interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.