Abstract

ABSTRACTWe have applied the modulated photocurrent (MPC) method over a wide range of frequencies (5Hz-100kHz) and temperatures (120K-380K) to assess its ability to accurately deduce the mobility gap distribution in a-Si:H. We have also investigated the effects of moving both the Fermi level within some samples (by light soaking and partial annealing) and the quasi-Fermi level (by applying the bias light) to observe how such changes influence the deduced density of states (DOS). We then compared the MPC results directly with the DOS determined by junction capacitance measurements in the same sample devices. We have determined general conditions under which, we believe, the MPC results provide an accurate picture of the gap state distribution. However, we found that under other conditions, the appearance of the deep defect peaks and other features do not represent the actual defect distribution but, rather, are artifacts due to recombination processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call